

PART 3: STEP-BY-STEP EXAMPLES

EXAMPLES

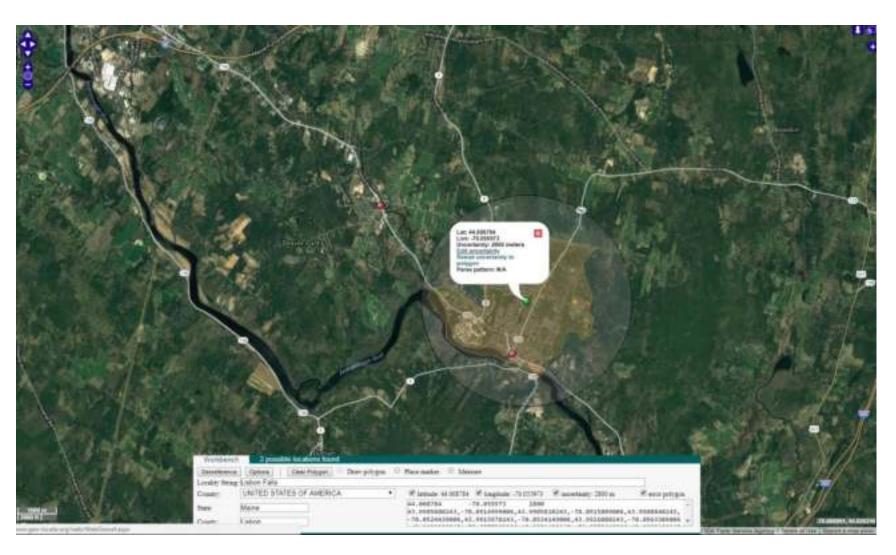
- Feature with Obvious Spatial Extent using GEOLocate
- Feature without Obvious Spatial Extent using Google Maps & MaNIS Georeferencing Calc.
- Offset Distance at a Heading using Google Maps & the MaNIS Georeferencing Calculator
- Offset Path using Google Maps and the MaNIS Georeferencing Calculator

Feature – with Obvious Spatial Extent Example: Lisbon Falls, Lisbon Co., Maine (U.S.)

Procedure:

- Use GEOLocate to find coordinates and radial for the city
- · Ensure coordinates are at corrected center of the city
- · Edit radial to encompass area as precisely as possible (snap to feature)

GEOLOCATE



GEOLocate finds coordinates within Lisbon Falls

Coordinates need to be shifted to a more appropriate center

Uncertainty radius does not encompass entire area of city

COORDINATE ADJUSTMENT

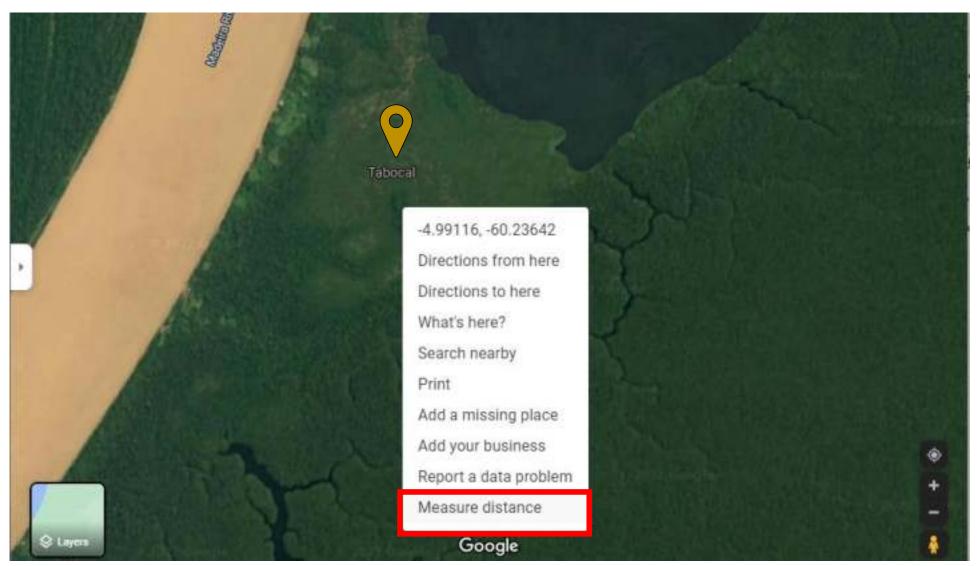
Adjust point to be in approximate center of region

Uncertainty should encompass entire area of city (polygon)

EDIT UNCERTAINTY

Resize
uncertainty to
polygon (faster
than manually
editing the
radius)

Note: polygon of city extent is not always displayed/known

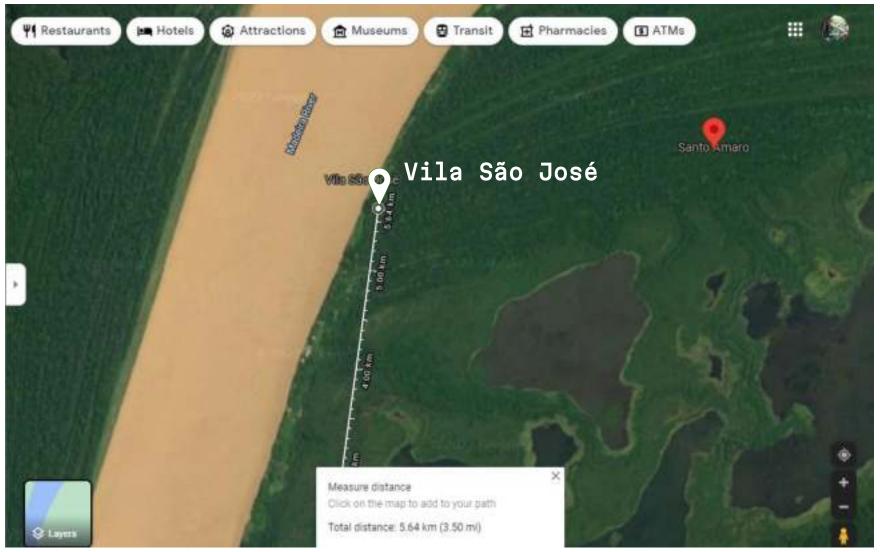

Feature – without Obvious Spatial Extent

Example: Tabocal, Amazonas (Brazil)

- Use Google Maps to locate coordinates of the area
- Measure from the coordinates to the approximate center of the nearest feature (of similar locality type)
- Divide distance in half to approximate the radial
- Input information into the MaNIS Georef. Calculator to find the uncertainty radius

Instructions are from previous version of the Quick Reference Guide (Wieczorek 2012) but in agreement with the updated guide (Zermoglio 2020)

PINNING YOUR LOCATION


To begin, right-click on the map where Google Maps displays the name of the location and select the "Measure distance" tool

FIND NEAREST NAMED PLACE

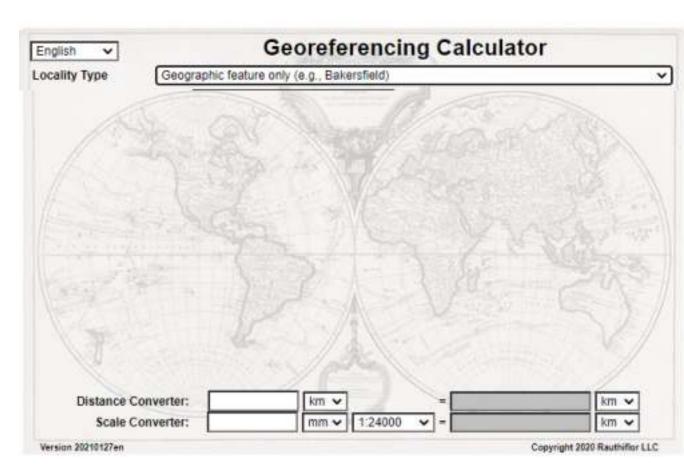
To find the nearest named feature you must pan around the map

MEASURE

Vila São José is nearest; measure a straight line between centers of both features, then halve distance = radial

RADIAL PROTOCOL

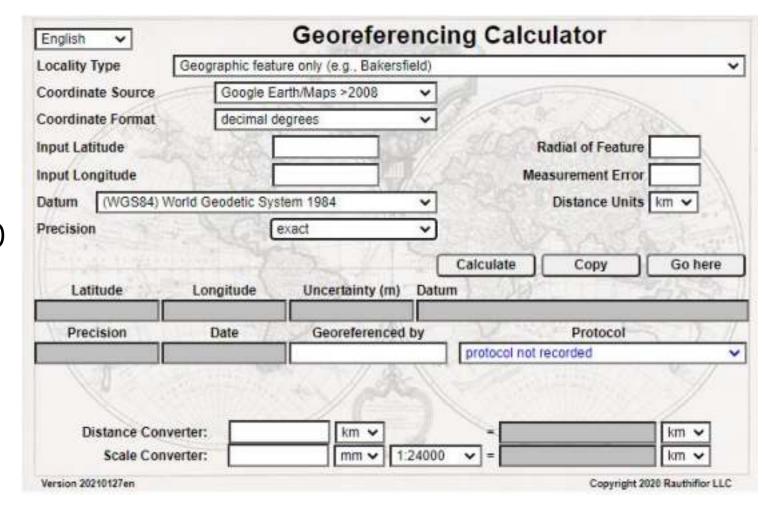
CALCULATOR PROCEDURE


GEOREFERENCING QUICK REFERENCE GUIDE

p.3 of 10

CALCULATION PROCEDURE LOCALITY TYPE (instructions on how to use the Georeferencing Calculator) Named place Calculation Type: "Error only - enter Lat/Long for the actual locality" Locality Type: "Named place only" Undefined Area: Locality refers to a geographic feature Coordinates: Determine the coordinates for the named place as well as possible using that does not have a visible evidence near the label for the named place on the map. clear spatial boundary Extent: Use half the measured distance from the selected coordinates to the center of Example: "Pampa the nearest named placed. Make note of the measure and the nearest named place in Grande" (the extent is georeferenceRemarks. 4.7 km given that the center of the nearest named place, "Colonia Mariano Sarratea" is 9.4 km distant)

LOCALITY TYPE


<u>Locality Type</u> = Geographic feature only

MaNIS Georeferencing Calculator

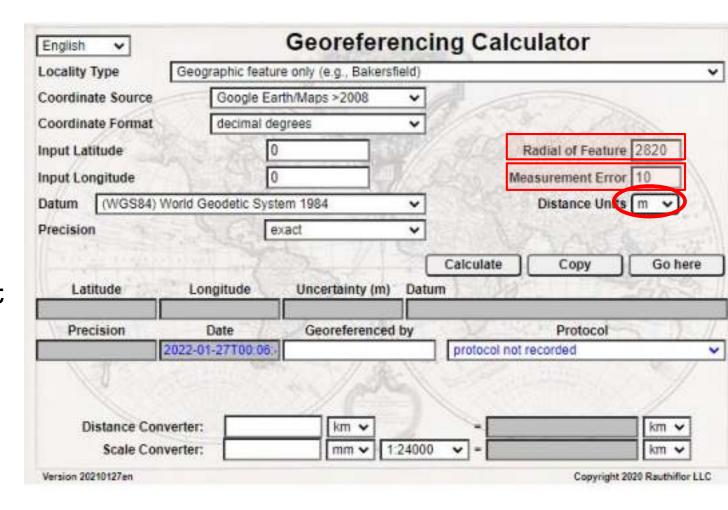
COORDINATE SOURCE, FORMAT, DATUM, PRECISION

- Coordinate Source: Google Maps > 2008
- <u>Coordinate Format</u>: Based on coordinate source (Google Maps) = <u>decimal</u> <u>degrees</u>
- Datum: WGS84 (Google Maps)
- Precision (of the coordinates): exact (Google Maps)

LATITUDE AND LONGITUDE

Latitude & Longitude do not need to be entered - important only when calculating offset coordinates

English 🗸	Georeferencing Calculator						
Locality Type	3eographic featu	re only (e.g., Bakersfield)					
Coordinate Source	Google Earth/Maps >2008						
Coordinate Format	decimal degrees			246			
Input Latitude	5 35	3000	Radial of Fee	ature			
Input Longitude	A STATE		Measurement I	Error			
7	Id Geodetic Syst	Distance Units km V					
Precision	The section	xact 🔻					
Latitude	Longitude	Uncertainty (m) Dat	Calculate Copy	Go here			
Precision	Date	Georeferenced by	Protocol protocol not recorded	ol)			
Distance Conver	6550	km 🗸 1:2400	0 🗸	km V			
Version 20210127en			Сору	right 2020 Rauthiflor LLC			


RADIAL

Radial of Feature: calculated radial of Tabocal

Measurement Error: 10m
(standard)

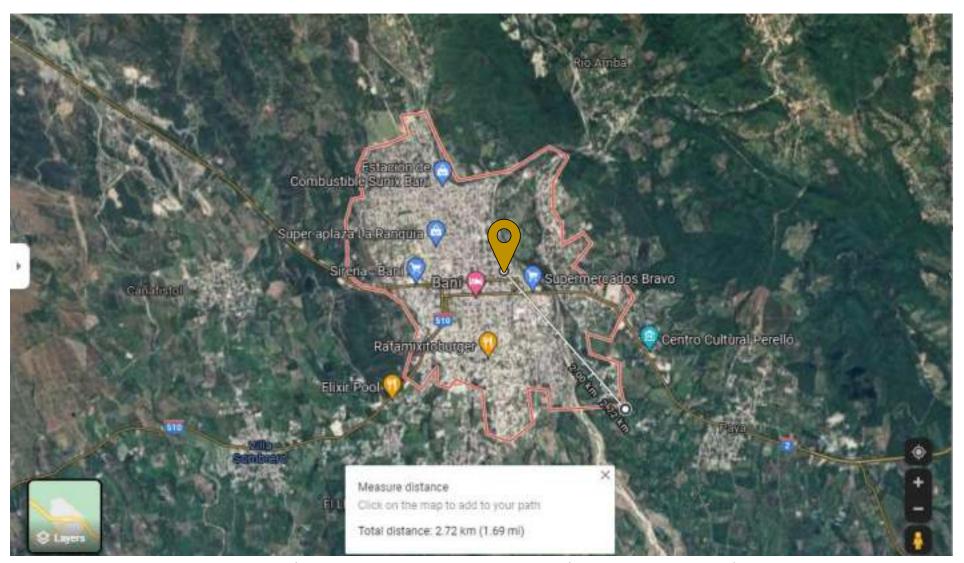
= Error associated with the georeferencer's ability to measure on the map

<u>Distance Unit:</u> m (must reflect the two fields above)

CALCULATE

Uncertainty radius is provided in meters, regardless of the input unit

English 🗸	Georeferencing Calculator					
Locality Type	Geographic fea	ture only (e.g., Bakersfield	i) ~			
Coordinate Source	Google E	Earth/Maps >2008				
Coordinate Format	decimal degrees					
Input Latitude		0	Radial of Feature 2820			
Input Longitude		0	Measurement Error 10			
11	World Geodetic Sy	stem 1984	Distance Units m V			
Precision		exact				
Latitude	Longitude		Calculate Copy Go here			
0	0		WGS84) World Geodetic System 1984			
Precision 0.0000001	Date 2022-01-27T00:00	Georeferenced by	Protocol protocol not recorded			
Distance Co Scale Co		km 🕶 1:24	000 v = km v			


Offset – Distance at a Heading

Example: 5km north of Baní, Dominican Republic

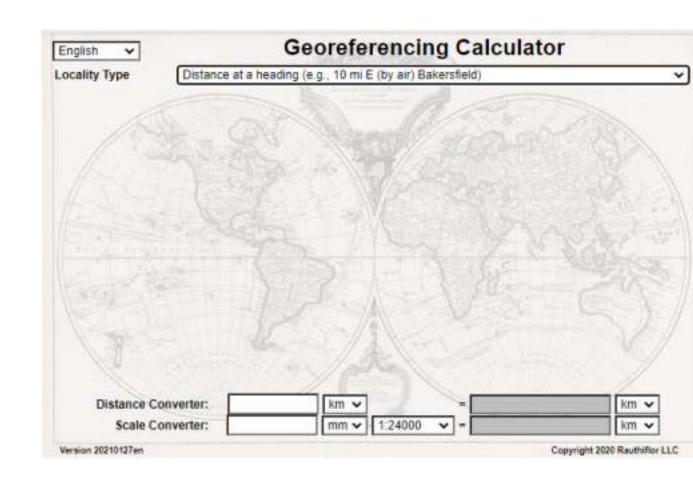
- Use Google Maps to locate coordinates of the city
- Find radial by measuring from coordinates to the farthest extent of the city
- Input information into the MaNIS Georeferencing Calculator to find the offset coordinates and the uncertainty radius.

Note: Use GEOLocate when applicable (U.S., Canada, Europe)

COORDINATES & RADIAL

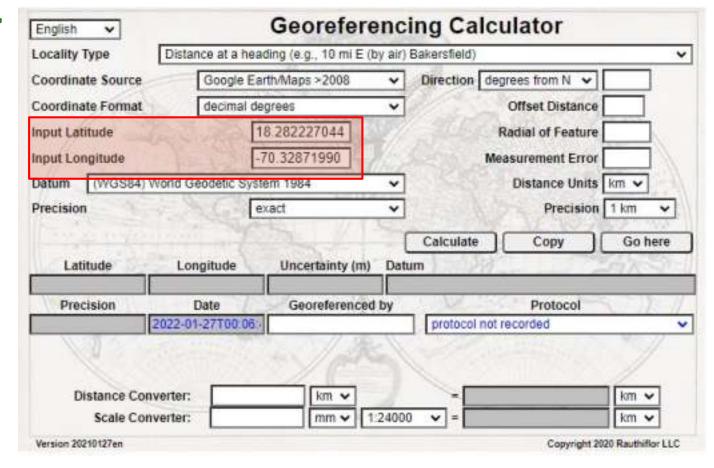
Locate coordinates of Baní center (18.2822270, -70.328719) and radial (2.72km to match offset units)

CALCULATOR PROCEDURE


GEOREFERENCING QUICK REFERENCE GUIDE

p.6 of 10

LOCALITY TYPE	CALCULATION PROCEDURE (instructions on how to use the Georeferencing Calculator)			
Offset Offset at a heading Examples: "50 miles W	Calculation Type: "Coordinates and error - enter the Lat/Long for the named place or starting point" Locality Type: "Distance at a heading"			
of Las Vegas", "10 km E de Amamá"	Coordinates: If "by road" or other path is specified in the locality description, use the method under Offset Along a Path. If the description could be interpreted reasonably either by a route or by air, use the method under More Than One Possibility. Otherwise, assume that the heading is "by air" and note this assumption in georeferenceRemarks. In this case use the coordinates of the geographic center of the named place as a starting point in the Georeferencing Calculator. These are not the coordinates of the locality, which will be given in the fields to the left of the Calculate button when it is clicked after all the fields above it have been entered. Extent: As for Named Places – Bounded Area or Named Places – Undefined Area, as appropriate.			


LOCALITY TYPE

<u>Locality Type</u>: Distance at a heading

COORDINATE SOURCE, FORMAT, DATUM, PRECISION

- <u>Coordinate Source</u>: Google Maps > 2008
- <u>Coordinate Format</u>: Based on coordinate source (Google Maps)
 <u>decimal degrees</u>
- Input Latitude/Long.:
 coordinates must be entered in
 order to calculate the offset
 coordinates according to input
 parameters
- <u>Datum</u>: WGS84 (Google Maps)
- <u>Precision</u> (of the coordinates):
 <u>exact</u> (Google Maps)

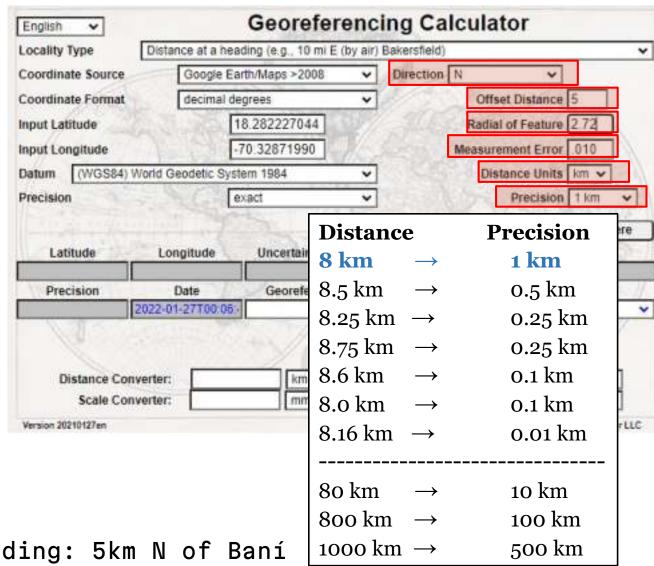
OFFSET

Offset Direction: N

Offset Distance: 5(km) - according to locality description.

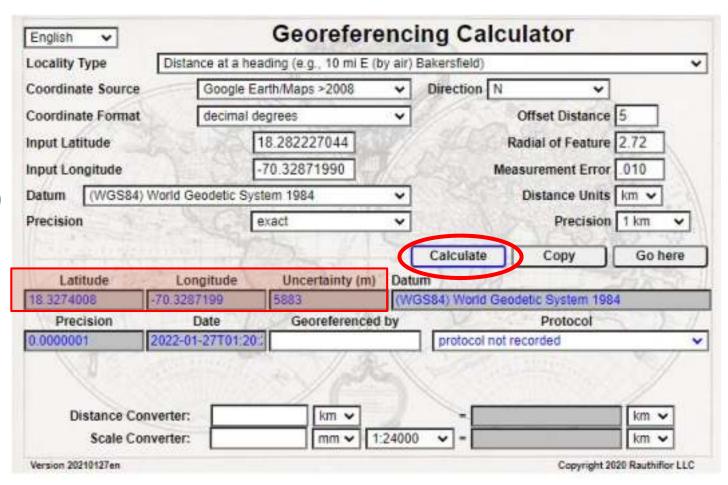
Radial of Feature: (Starting point of offset)

City of Baní = 2.72(km)


Measurement Error:

Always use 10m (or 0.01km)

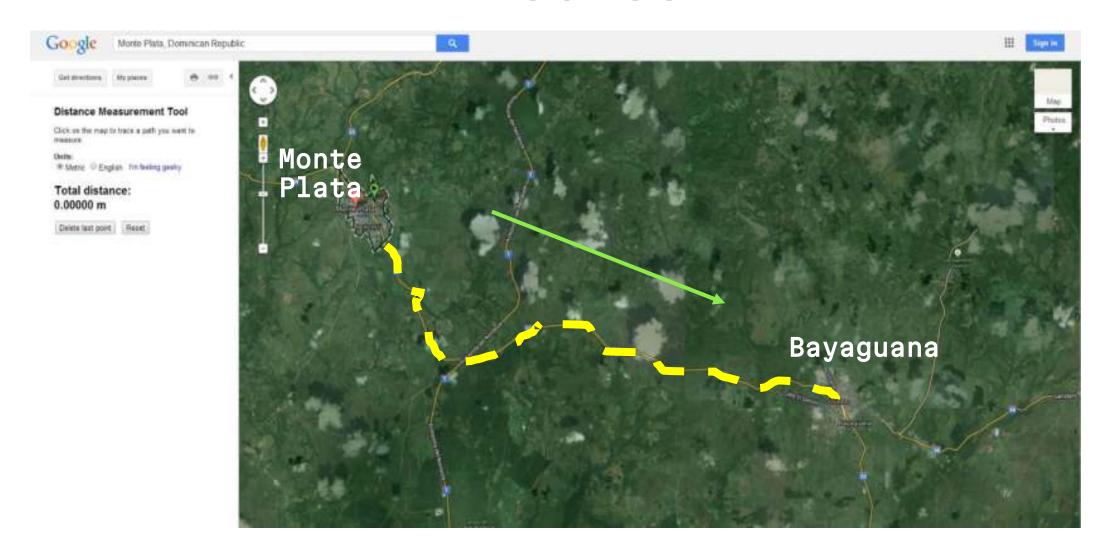
Distance Precision:


precision of 5km distance is 1km

* Maintain consistency in measurement units

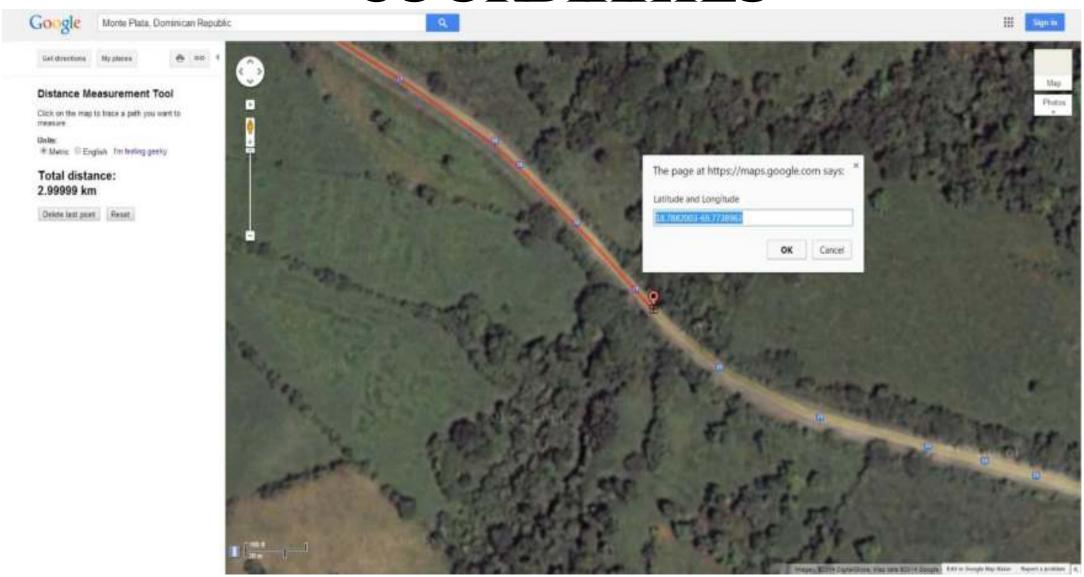
CALCULATE

Offset coordinates and uncertainty radius (in meters) are provided.



Offset – Offset along a Path

Example: 3km along Monte Plata-Bayaguana Road, D.R.


- Use Google Maps to locate road connecting the cities
- Measure 3km along road in specified direction (from Monte Plata toward Bayaguana) starting from first named place and capture coordinates
- Find radial by measuring from starting location of offset to farthest extent of linear feature within city bounds
- Input information into the MaNIS Georeferencing Calculator to find the uncertainty radius.

ASSESS

Locate road connecting the cities. Begin measuring offset from location where road comes nearest to Monte Plata center

COORDINATES

Zoom in and precisely measure along the road to the offset distance stated (toward the city of Bayaguana); capture coordinates

RADIAL

The starting node of the ruler (1) marks the starting location for the offset, the second node (2) marks the farthest reaches of the road within city limits.

CALCULATOR PROCEDURE

GEOREFERENCING QUICK REFERENCE GUIDE

p.7 of 10

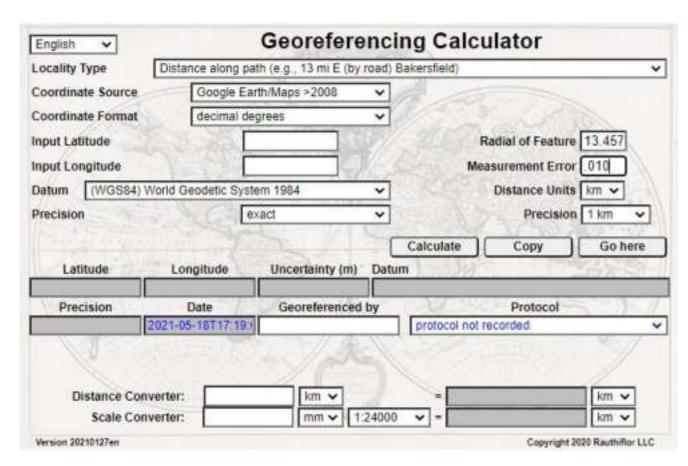
LOCALITY TYPE

CALCULATION PROCEDURE
(instructions on how to use the Georeferencing Calculator)

Offset

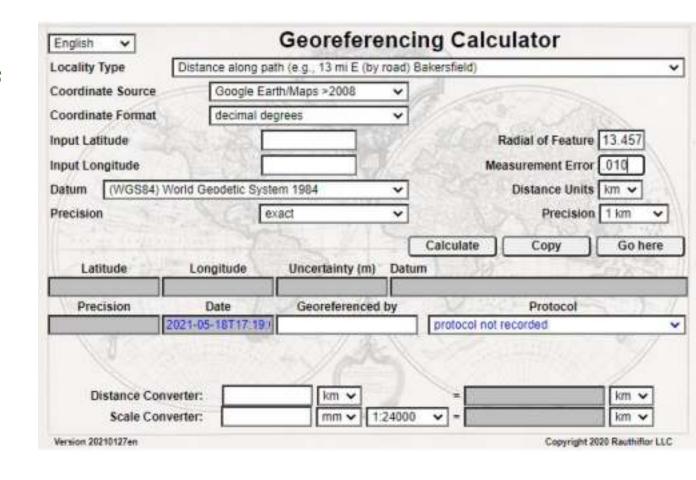
Offset along a path

Examples: "7.9 mi N Beatty, on US 95", "3 km en el Rio Jimenez arriba de Anita Grande", "left bank of the Mississippi River, 16 mi downstream from St. Louis", "Ruta Nacional 81, 8 km W de Ingeniero Guillermo Nicasio Juárez" Calculation Type: "Error only - enter Lat/Long for the actual locality"


Locality Type: "Distance along a Path" -

Coordinates: Find the center of the named place as you would for Named Place –
Bounded Area or Named Place – Undefined Area, as appropriate. Use a measuring
tool on a printed or digital map to follow the specified route for the given distance. Use
the end point as the coordinates. If no specific path is specified in the locality
description, be sure to note in georeferenceRemarks which path was measured.

Extent: As for Named Place - Bounded Area or Named Place - Undefined Area, as appropriate.


LOCALITY TYPE

<u>Locality Type</u>: Distance along a path

COORDINATE SOURCE, FORMAT, DATUM, PRECISION

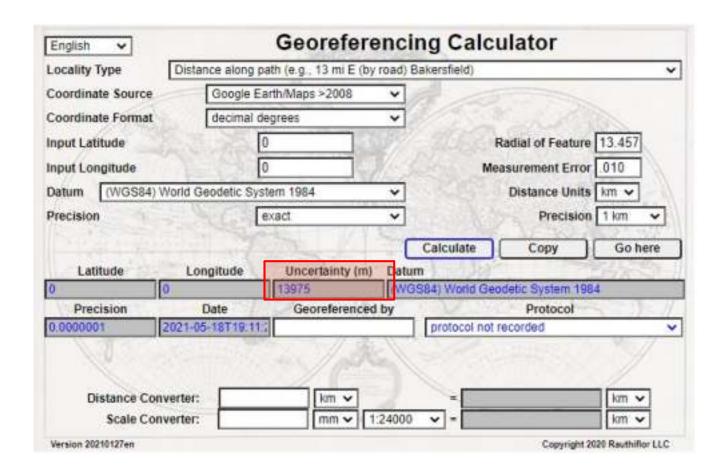
- Coordinate Source: Google Maps2008
- <u>Coordinate Format</u>: Based on coordinate source (Google Maps) = <u>decimal degrees</u>
- Datum: WGS84 (Google Maps)
- Precision (of the coordinates): exact (Google Maps)

RADIAL

Radial of Feature: Extent of the linear feature within the bounds of the starting location (city of Monte Plata). Enter extent in the same units as the offset distance

Measurement Error: Use 10m (=
0.010km)

<u>Distance Precision</u>: Dependent on the offset distance. The 3km offset = 1km distance precision.


Distance Precision 3km →

1km

Georeferencing Calculator					
Distance along pa	Distance along path (e.g., 13 mi E (by road) Bakersfield)				
Google Earth/Maps >2008		100			
decimal de	decimal degrees				
		73N77NN3		money /	
World Geodetic Syst	tem 1984 💙		Distance Units km	~	
- 16-6	xact 🕶		Precision 1 k	m v	
Longitude	Uncertainty (m) Dat	Calculate	Сору	Go here	
Date	Georeferenced by	LAVISH	Protocol	3 11	
2021-05-18T17:19:		protocol not	recorded		
nverter:	km 🕶		k	m v	
	Google Ea decimal de Morld Geodetic Syst	Distance along path (e.g., 13 mi E (by road) Google Earth/Maps > 2008 decimal degrees World Geodetic System 1984 exact Longitude Uncertainty (m) Date Georeferenced by 2021-05-18T17:19//	Distance along path (e.g., 13 mi E (by road) Bakersfield) Google Earth/Maps > 2008 decimal degrees World Geodetic System 1984 exact Calculate Longitude Uncertainty (m) Datum Date Georeferenced by 2021-05-18T17:191/	Distance along path (e.g., 13 mi E (by road) Bakersfield) Google Earth/Maps > 2008 decimal degrees Radial of Feature 13. Measurement Error 01 Distance Units km exact Calculate Copy Longitude Uncertainty (m) Datum Date Georeferenced by Protocol 2021-05-18T17:190 Protocol not recorded	

MANIS: CALCULATE

Uncertainty radius provided in meters

QUESTIONS?

Google Maps
GEOLocate Web Application
MaNIS Georef. Calculator
Georef. Quick Ref. Guide

NYBG

This is an updated compilation of information provided by the iDigBio's first Train-the-Trainers Georeferencing Workshop (put together by K. Watson, S. Gottschalk, S. Ascencio, 2013), altered to fit NYBG georeferencing needs over the years (https://www.idigbio.org/content/idigbios-first-train-trainers-georeferencing-workshop)

Georeferencing Quick Reference Guide (2020)

Zermoglio PF, Chapman AD, Wieczorek JR, Luna MC & Bloom DA. 2020. Georeferencing Quick Reference Guide. Copenhagen: GBIF Secretariat. https://doi.org/10.35035/e09p-h128

Georeferencing Quick Reference Guide (2012): consolidated guide for inputs for the MaNIS Georeferencing Calculator Wieczorek J, Bloom D, Constable H, Fang J, Koo M, Spencer C & Yamamo K (2012) Georeferencing Quick Reference Guide, version 2012-10-08. https://www.idigbio.org/wiki/images/1/1e/GeoreferencingQuickReferenceGuide.pdf

BioGeomancer Guide to Best Practices for Georeferencing (2006) is a basis for documentation of collecting & georeferencing protocols: Chapman, A.D. and J. Wieczorek (eds). 2006. Guide to Best Practices for Georeferencing. Copenhagen: Global Biodiversity Information Facility.

https://www.gbif.org/document/80536/biogeomancer-guide-to-best-practices-in-georeferencing (2006 version). Chapman AD & Wieczorek JR (2020)

Georeferencing Best Practices. Copenhagen: GBIF Secretariat. https://doi.org/10.15468/doc-gg7h-s853 (2020 version)

The MaNIS Georeferencing Calculator is a JavaScript application used in finding an uncertainty radius that incorporates all possible sources of error in the georeferencing process (tool: <a href="http://georeferencing.org/georefcalculator/geore

RESOURCES

Bloom DA, Wieczorek JR & Zermoglio PF (2020) Georeferencing Calculator Manual. Copenhagen: GBIF Secretariat. https://doi.org/10.35035/gdwq-3v93

Chapman AD & Wieczorek JR (2020) Georeferencing Best Practices. Copenhagen: GBIF Secretariat. https://doi.org/10.15468/doc-gg7h-s853

Spencer C, Yamamoto K, Fang J, Constable H, Koo M, & Wieczorek J (2008) Georeferencing for Dummies. http://georeferencing.org/docs/georeffordummy.xls

TDWG (2018) Darwin Core quick reference guide. Biodiversity Information Standards (TDWG). https://dwc.tdwg.org/terms/

Wieczorek J (2001) MaNIS/HerpNET/ORNIS Georeferencing Guidelines. University of California, Berkeley: Museum of Vertebrate Zoology. http://georeferencing.org/georefcalculator/docs/52 GeorefGuide.html

Wieczorek J & Bloom DA (2015) Manual for the Georeferencing Calculator. University of California, Berkeley: Museum of Vertebrate Zoology. http://georeferencing.org/gci2/docs/ GeoreferencingCalculatorManualv2.html

Wieczorek J, Guo Q & Hijmans R (2004) The point-radius method for georeferencing locality descriptions and calculating associated uncertainty. International Journal of Geographical Information Science. 18: 745-767. https://doi.org/10.1080/13658810412331280211